30 resultados para Immunity

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection by Epstein-Barr virus (EBV) occurs in approximately 95% of the world s population. EBV was the first human virus implicated in oncogenesis. Characteristic for EBV primary infection are detectable IgM and IgG antibodies against viral capsid antigen (VCA). During convalescence the VCA IgM disappears while the VCA IgG persists for life. Reactivations of EBV occur both among immunocompromised and immunocompetent individuals. In serological diagnosis, measurement of avidity of VCA IgG separates primary from secondary infections. However, in serodiagnosis of mononucleosis it is quite common to encounter, paradoxically, VCA IgM together with high-avidity VCA IgG, indicating past immunity. We determined the etiology of this phenomenon and found that, among patients with cytomegalovirus (CMV) primary infection a large proportion (23%) showed antibody profiles of EBV reactivation. In contrast, EBV primary infection did not appear to induce immunoreactivation of CMV. EBV-associated post-transplant lymphoproliferative disease (PTLD) is a life threatening complication of allogeneic stem cell or solid organ transplantation. PTLD may present with a diverse spectrum of clinical symptoms and signs. Due to rapidity of PTLD progression especially after stem cell transplantation, the diagnosis must be obtained quickly. Pending timely detection, the evolution of the fatal disease may be halted by reduction of immunosuppression. A promising new PTLD treatment (also in Finland) is based on anti-CD-20 monoclonal antibodies. Diagnosis of PTLD has been demanding because of immunosuppression, blood transfusions and the latent nature of the virus. We set up in 1999 to our knowledge first in Finland for any microbial pathogen a real-time quantitative PCR (qPCR) for detection of EBV DNA in blood serum/plasma. In addition, we set up an in situ hybridisation assay for EBV RNA in tissue sections. In collaboration with a group of haematologists at Helsinki University Central Hospital we retrospectively determined the incidence of PTLD among 257 allogenic stem cell transplantations (SCT) performed during 1994-1999. Post-mortem analysis revealed 18 cases of PTLD. From a subset of PTLD cases (12/18) and a series of corresponding controls (36), consecutive samples of serum were studied by the new EBV-qPCR. All the PTLD patients were positive for EBV-DNA with progressively rising copy numbers. In most PTLD patients EBV DNA became detectable within 70 days of SCT. Of note, the appearance of EBV DNA preceded the PTLD symptoms (fever, lymphadenopathy, atypical lymphocytes). Among the SCT controls, EBV DNA occurred only sporadically, and the EBV-DNA levels remained relatively low. We concluded that EBV qPCR is a highly sensitive (100%) and specific (96%) new diagnostic approach. We also looked for and found risk factors for the development of PTLD. Together with a liver transplantation group at the Transplantation and Liver Surgery Clinic we wanted to clarify how often and how severely do EBV infections occur after liver transplantation. We studied by the EBV qPCR 1284 plasma samples obtained from 105 adult liver transplant recipients. EBV DNA was detected in 14 patients (13%) during the first 12 months. The peak viral loads of 13 asymptomatic patients were relatively low (<6600/ml), and EBV DNA subsided quickly from circulation. Fatal PTLD was diagnosed in one patient. Finally, we wanted to determine the number and clinical significance of EBV infections of various types occurring among a large, retrospective, nonselected cohort of allogenic SCT recipients. We analysed by EBV qPCR 5479 serum samples of 406 SCT recipients obtained during 1988-1999. EBV DNA was seen in 57 (14%) patients, of whom 22 (5%) showed progressively rising and ultimately high levels of EBV DNA (median 54 million /ml). Among the SCT survivors, EBV DNA was transiently detectable in 19 (5%) asymptomatic patients. Thereby, low-level EBV-DNA positivity in serum occurs relatively often after SCT and may subside without specific treatment. However, high molecular copy numbers (>50 000) are diagnostic for life-threatening EBV infection. We furthermore developed a mathematical algorithm for the prediction of development of life-threatening EBV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis is associated with a systemic inflammatory response. It is characterised by an early proinflammatory response and followed by a state of immunosuppression. In order to improve the outcome of patients with infection and sepsis, novel therapies that influence the systemic inflammatory response are being developed and utilised. Thus, an accurate and early diagnosis of infection and evaluation of immune state are crucial. In this thesis, various markers of systemic inflammation were studied with respect to enhancing the diagnostics of infection and of predicting outcome in patients with suspected community-acquired infection. A total of 1092 acutely ill patients admitted to a university hospital medical emergency department were evaluated, and 531 patients with a suspicion of community-acquired infection were included for the analysis. Markers of systemic inflammation were determined from a blood sample obtained simultaneously with a blood culture sample on admission to hospital. Levels of phagocyte CD11b/CD18 and CD14 expression were measured by whole blood flow cytometry. Concentrations of soluble CD14, interleukin (IL)-8, and soluble IL-2 receptor α (sIL-2Rα) were determined by ELISA, those of sIL-2R, IL-6, and IL-8 by a chemiluminescent immunoassay, that of procalcitonin by immunoluminometric assay, and that of C-reactive protein by immunoturbidimetric assay. Clinical data were collected retrospectively from the medical records. No marker of systemic inflammation, neither CRP, PCT, IL-6, IL-8, nor sIL-2R predicted bacteraemia better than did the clinical signs of infection, i.e., the presence of infectious focus or fever or both. IL-6 and PCT had the highest positive likelihood ratios to identify patients with hidden community-acquired infection. However, the use of a single marker failed to detect all patients with infection. A combination of markers including a fast-responding reactant (CD11b expression), a later-peaking reactant (CRP), and a reactant originating from inflamed tissues (IL-8) detected all patients with infection. The majority of patients (86.5%) with possible but not verified infection showed levels exceeding at least one cut-off limit of combination, supporting the view that infection was the cause of their acute illness. The 28-day mortality of patients with community-acquired infection was low (3.4%). On admission to hospital, the low expression of cell-associated lipopolysaccharide receptor CD14 (mCD14) was predictive for 28-day mortality. In the patients with severe forms of community-acquired infection, namely pneumonia and sepsis, high levels of soluble CD14 alone did not predict mortality, but a high sCD14 level measured simultaneously with a low mCD14 raised the possibility of poor prognosis. In conclusion, to further enhance the diagnostics of hidden community-acquired infection, a combination of inflammatory markers is useful; 28-day mortality is associated with low levels of mCD14 expression at an early phase of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studies presented in this thesis aimed to a better understanding of the molecular biology of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus, Closteroviridae) and its role in the development of synergistic viral diseases. The emphasis was on the severe sweet potato virus disease (SPVD) that results from a synergistic interaction of SPCSV and Sweet potato feathery mottle virus (SPFMV, Potyvirus, Potyviridae). SPVD is the most important disease affecting sweetpotato. It is manifested as a significant increase in symptom severity and SPFMV titres. This is accompanied by a dramatic sweetpotato yield reduction. SPCSV titres remain little affected in the diseased plants. Viral synergistic interactions have been associated with the suppression of an adaptive general defence mechanism discovered in plants and known as RNA silencing. In the studies of this thesis two novel proteins (RNase3 and p22) identified in the genome of a Ugandan SPCSV isolate were shown to be involved in suppression of RNA silencing. RNase3 displayed a dsRNA-specific endonuclease activity that enhanced the RNA-silencing suppression activity of p22. Comparative analyses of criniviral genomes revealed variability in the gene content at the 3´end of the genomic RNA1. Molecular analyses of different isolates of SPCSV indicated a marked intraspecific heterogeneity in this region where the p22 and RNase3 genes are located. Isolates of the East African strain of SPCSV from Tanzania and Peru and an isolate from Israel were missing a 767-nt fragment that included the p22 gene. However, regardless of the absence of p22, all SPCSV isolates acted synergistically with SPFMV in co-infected sweetpotato, enhanced SPFMV titres and caused SPVD. These results showed that p22 is dispensable for development of SPVD. The role of RNase3 in SPVD was then studied by generating transgenic plants expressing the RNase3 protein. These plants had increased titres of SPFMV (ca. 600-fold higher in comparison with nontransgenic plants) 2-3 weeks after graft inoculation and displayed the characteristic SPVD symptoms. RNA silencing suppression (RSS) activity of RNase3 was detected in agroinfiltrated leaves of Nicotiana bethamiana. In vitro studies showed that RNase3 was able to cleave small interferring RNAs (siRNA) to products of ~14-nt. The data thus identified RNase3 as a suppressor of RNA silencing able to cleave siRNAs. RNase3 expression alone was sufficient for breaking down resistance to SPFMV in sweetpotato and for the development of SPVD. Similar RNase III-like genes exist in animal viruses which points out a novel and possibly more general mechanism of RSS by viruses. A reproducible method of sweetpotato transformation was used to target RNA silencing against the SPCSV polymerase region (RdRp) with an intron-spliced hairpin construct. Hence, engineered resistance to SPCSV was obtained. Ten out of 20 transgenic events challenged with SPCSV alone showed significantly reduced virus titres. This was however not sufficient to prevent SPVD upon coinfection with SPFMV. Immunity to SPCSV seems to be required to control SPVD and targeting of different SPCSV regions need to be assessed in further studies. Based on the identified key role of RNase3 in SPVD the possibility to design constructs that target this gene might prove more efficient in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type A lantibiotic nisin produced by several Lactococcus lactis strains, and one Streptococcus uberis strainis a small antimicrobial peptide that inhibits the growth of a wide range of gram-positive bacteria, such as Bacillus, Clostridium, Listeria and Staphylococcus species. It is nontoxic to humans and used as a food preservative (E234) in more than 50 countries including the EU, the USA, and China. National legislations concerning maximum addition levels of nisin in different foods vary greatly. Therefore, there is a demand for non-laborious and sensitive methods to identify and quantify nisin reliably from different food matrices. The horizontal inhibition assay, based on the inhibitory effect of nisin to Micrococcus luteus is the base for most quantification methods developed so far. However, the sensitivity and accuracy of the agar diffusion method is affected by several parameters. Immunological tests have also been described. Taken into account the sensitivity of immunological methods to interfering substances within sample matrices, and possible cross-reactivities with lantibiotics structurally close to nisin, their usefulness for nisin detection from food samples remains limited. The proteins responsible for nisin biosynthesis, and producer self-immunity are encoded by genes arranged into two inducible operons, nisA/Z/QBTCIPRK and nisFEG, which also contain internal, constitutive promoters PnisI and PnisR. The transmembrane histidine kinase NisK and the response regulator NisR form a two-component signal transduction system, in which NisK autophosphorylates after exposure to extra cellular nisin, and subsequently transfers the phosphate to NisR. The phosphorylated NisR then relays the signal downstream by binding to two regulated promoters in the nisin gene cluster, i.e the nisA/Z/Qand the nisF promoters, thus activating transcription of the structural gene nisA/Z/Q and the downstream genes nisBTCIPRK from the nisA/Z/Q promoter, and the genes nisFEG from the nisF promoter. In this work two novel and highly sensitive nisin bioassays were developed. Both of these quantification methods were based on NisRK mediated, nisin induced Green Fluorescent Protein (GFP) fluorescence. The suitabilities of these assays for quantifica¬tion of nisin from food samples were evaluated in several food matrices. These bioassays had nisin sensitivities in the nanogram or picogram levels. In addition, shelf life of nisin in cooked sausages and retainment of the induction activity of nisin in intestinal chyme (intestinal content) was assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defence against pathogens is a vital need of all living organisms that has led to the evolution of complex immune mechanisms. However, although immunocompetence the ability to resist pathogens and control infection has in recent decades become a focus for research in evolutionary ecology, the variation in immune function observed in natural populations is relatively little understood. This thesis examines sources of this variation (environmental, genetic and maternal effects) during the nestling stage and its fitness consequences in wild populations of passerines: the blue tit (Cyanistes caeruleus) and the collared flycatcher (Ficedula albicollis). A developing organism may face a dilemma as to whether to allocate limited resources to growth or to immune defences. The optimal level of investment in immunity is shaped inherently by specific requirements of the environment. If the probability of contracting infection is low, maintaining high growth rates even at the expense of immune function may be advantageous for nestlings, as body mass is usually a good predictor of post-fledging survival. In experiments with blue tits and haematophagous hen fleas (Ceratophyllus gallinae) using two methods, methionine supplementation (to manipulate nestlings resource allocation to cellular immune function) and food supplementation (to increase resource availability), I confirmed that there is a trade-off between growth and immunity and that the abundance of ectoparasites is an environmental factor affecting allocation of resources to immune function. A cross-fostering experiment also revealed that environmental heterogeneity in terms of abundance of ectoparasites may contribute to maintaining additive genetic variation in immunity and other traits. Animal model analysis of extensive data collected from the population of collared flycatchers on Gotland (Sweden) allowed examination of the narrow-sense heritability of PHA-response the most commonly used index of cellular immunocompetence in avian studies. PHA-response is not heritable in this population, but is subject to a non-heritable origin (presumably maternal) effect. However, experimental manipulation of yolk androgen levels indicates that the mechanism of the maternal effect in PHA-response is not in ovo deposition of androgens. The relationship between PHA-response and recruitment was studied for over 1300 collared flycatcher nestlings. Multivariate selection analysis shows that it is body mass, not PHA-response, that is under direct selection. PHA-response appears to be related to recruitment because of its positive relationship with body mass. These results imply that either PHA-response fails to capture the immune mechanisms that are relevant for defence against pathogens encountered by fledglings or that the selection pressure from parasites is not as strong as commonly assumed.